

Review_methods for estimation of N2O emissions from managed soils

Relevant LULUCF land categories:

- 4A. Forest land
- 4D. Wetlands
- 4E. Settlements

NB. N2O emissions from Cropland and Grasslands reported under Agriculture sector

Terminology:

N2O emissions = $[N2O-N] \times 28/44$

 N_2O-N = fraction of total N contained by source convertible to N2O emission F = activity data

N2O Emissions from Managed Soils: **Direct N2O** emissions sources from managed soils

- human-induced N inputs to managed soils:
 - **synthetic N** fertilisers (FsN);
 - organic N applied as fertiliser (e.g., animal manure, compost, sewage sludge, rendering waste) (Fon);
 - urine and dung N deposited on pasture, range and paddock by grazing animals (FPRP);
 - **N in crop residues** (above-ground and below-ground), including from N-fixing crops and from forages during pasture renewal (FcR)
- mineralisation of N in soil organic matter following drainage/management of organic soils:
 - drainage/management of organic soils (i.e., Histosols) (Fos)
- mineralisation of N by cultivation/land-use change on mineral soils:
 - N mineralisation associated with loss of soil organic matter resulting from change of land use or management of mineral soils (Fsom)

EQUATION 11.1

DIRECT N₂O EMISSIONS FROM MANAGED SOILS (TIER 1)

$$N_2O_{Direct} - N = N_2O - N_{Ninputs} + N_2O - N_{OS} + N_2O - N_{PRP}$$

EQUATION 11.2

DIRECT N₂O EMISSIONS FROM MANAGED SOILS (TIER 2)

$$N_{2}O_{Direct} - N = \sum_{i} (F_{SN} + F_{ON})_{i} \bullet EF_{1i} + (F_{CR} + F_{SOM}) \bullet EF_{1} + N_{2}O - N_{OS} + N_{2}O - N_{PRP}$$

N2ODirect –N = N2O–N emissions from managed soils, kg N2O–N yr-1

N2O-NN inputs = N2O-N emissions from *N inputs to managed soils*, kg N2O-N yr-1

N2O-Nos = N2O-N emissions from managed organic soils, kg N2O-N yr-1

N₂O-N_{PRP} = N₂O-N emissions from *urine and dung inputs to grazed soils*, kg N₂O-N yr-1

N2O-N_N inputs = **F** (amount of ..., kg N2O-N yr-1) * **EF1** (emission factor for share of N which is convertetible to N2O emissions, from N inputs)

$$N_{2}O-N_{N\,inputs} = \begin{bmatrix} \left[\left(F_{SN} + F_{ON} + F_{CR} + F_{SOM} \right) \bullet EF_{1} \right] + \\ \left[\left(F_{SN} + F_{ON} + F_{CR} + F_{SOM} \right)_{FR} \bullet EF_{1FR} \right] \end{bmatrix}$$

SN –syntetic fertilizer, ON-organic fertilizers, CR-crop rezidues, **SOM – soil organic matter** FR-flooded rice

N2O-Nos = **F** (area of, kg N2O-N ha-1) * **EF2** (mission factor for N2O emissions from drained/managed organic soils)

$$N_{2}O-N_{OS} = \begin{bmatrix} \left(F_{OS,CG,Temp} \bullet EF_{2CG,Temp}\right) + \left(F_{OS,CG,Trop} \bullet EF_{2CG,Trop}\right) + \\ \left(F_{OS,F,Temp,NR} \bullet EF_{2F,Temp,NR}\right) + \left(F_{OS,F,Temp,NP} \bullet EF_{2F,Temp,NP}\right) + \\ \left(F_{OS,F,Trop} \bullet EF_{2F,Trop}\right) \end{bmatrix}$$

N2O-NPRP = \mathbf{F} (amount of, kg N2O-N ha-1) * $\mathbf{EF3}$ (emission factor for N2O from urine and dung N deposited on pasture, range and paddock by grazing animals)

$$N_2O-N_{PRP} = \left[\left(F_{PRP,CPP} \bullet EF_{3PRP,CPP} \right) + \left(F_{PRP,SO} \bullet EF_{3PRP,SO} \right) \right]$$

 $TABLE\ 11.1$ Default emission factors to estimate direct N_2O emissions from managed soils

Emission factor	Default value	Uncertainty range
EF ₁ for N additions from mineral fertilisers, organic amendments and crop residues, and N mineralised from mineral soil as a result of loss of soil carbon [kg N ₂ O-N (kg N) ⁻¹]	0.01	0.003 - 0.03
EF _{1FR} for flooded rice fields [kg N ₂ O-N (kg N) ⁻¹]	0.003	0.000 - 0.006
$EF_{2CG,Temp}$ for temperate organic crop and grassland soils (kg $N_2O\!-\!N\;ha^{\text{-}1})$	8	2 - 24
$EF_{2 CG, Trop}$ for tropical organic crop and grassland soils (kg $N_2O-N\ ha^{-1}$)	16	5 - 48
$EF_{2F, Temp, Org, R}$ for temperate and boreal organic nutrient rich forest soils (kg N_2O-N ha ⁻¹)	0.6	0.16 - 2.4
$EF_{2F, Temp, Org, P}$ for temperate and boreal organic nutrient poor forest soils (kg N_2O-N ha ⁻¹)	0.1	0.02 - 0.3
EF _{2F, Trop} for tropical organic forest soils (kg N ₂ O-N ha ⁻¹)	8	0 - 24
EF _{3PRP, CPP} for cattle (dairy, non-dairy and buffalo), poultry and pigs [kg N ₂ O-N (kg N) ⁻¹]	0.02	0.007 - 0.06
EF _{3PRP, SO} for sheep and 'other animals' [kg N ₂ O-N (kg N) ⁻¹]	0.01	0.003 - 0.03

Sources:

EF₁: Bouwman et al. 2002a,b; Stehfest & Bouwman, 2006; Novoa & Tejeda, 2006 in press; EF_{1FR}: Akiyama *et al.*, 2005; EF_{2CG, Temp}, EF_{2CG, Trop}, EF_{2F, Temp}: Klemedtsson *et al.*, 1999, IPCC Good Practice Guidance, 2000; EF_{2F, Temp}: Alm *et al.*, 1999; Laine *et al.*, 1996; Martikainen *et al.*, 1995; Minkkinen *et al.*, 2002: Regina *et al.*, 1996; Klemedtsson *et al.*, 2002; EF_{3, CPP}, EF_{3, SO}: de Klein, 2004.

N loss in soil management

EQUATION 11.8

N MINERALISED IN MINERAL SOILS AS A RESULT OF LOSS OF SOIL C THROUGH CHANGE IN LANI USE OR MANAGEMENT (TIERS 1 AND 2)

$$F_{SOM} = \sum_{LU} \left[\left(\Delta C_{Mineral, \ LU} \bullet \frac{1}{R} \right) \bullet 1000 \right]$$

- $\Delta C_{\text{Mineral}, LU}$ = average annual loss of soil carbon for each land-use type (LU), tonnes C (Note: for Tier 1, $\Delta C_{\text{mineral}, LU}$ will have a single value for all land-uses and management systems. Using Tier 2 the value for $\Delta C_{\text{mineral}, LU}$ will be disaggregated by individual land-use and/or management systems.
- R = C:N ratio of the soil organic matter. A default value of 15 (uncertainty range from 10 to 30) for the C:N ratio (R) may be used for situations involving land-use change from Forest Land or Grassland to Cropland, in the absence of more specific data for the area. A default value of 10 (range from 8 to 15) may be used for situations involving management changes on Cropland Remaining Cropland. C:N ratio can change over time, land use, or management practice ¹⁷. If countries can document changes in C:N ratio, then different values can be used over the time series, land use, or management practice.

N2O Emissions from Managed Soils: in-direct N2O emissions sources

- Volatilisation and deposition & leaching and runoff from land associated to:
 - synthetic N fertilisers (Fsn);
 - organic N applied as fertiliser (e.g., animal manure, compost, sewage sludge, rendering waste) (Fon);
 - urine and dung N deposited on pasture, range and paddock by grazing animals (FPRP);
 - N in crop residues (above-ground and below-ground), including from N-fixing crops and from forages during pasture renewal (Fcr);
 - N mineralisation associated with loss of soil organic matter resulting from change of land use or management of mineral soils (Fsom)

EQUATION 11.9

N2O FROM ATMOSPHERIC DEPOSITION OF N VOLATILISED FROM MANAGED SOILS (TIER 1)

$$N_2O_{(ATD)}-N = [(F_{SN} \bullet Frac_{GASF}) + ((F_{ON} + F_{PRP}) \bullet Frac_{GASM})] \bullet EF_4$$

Frac GASF, GASM = fraction that volatilises as NH3 and NOx [kg N volatilised (kg of N applied or deposited)-1]

EF4 = emission factor for N2O emissions from atmospheric deposition of N on soils and water surfaces, [kg N-N2O (kg NH3-N + NOx-N volatilised)-1]

EQUATION 11.10

N₂O FROM N LEACHING/RUNOFF FROM MANAGED SOILS IN REGIONS WHERE LEACHING/RUNOFF OCCURS (TIER 1)

$$N_2O_{(L)}-N = (F_{SN} + F_{ON} + F_{PRP} + F_{CR} + F_{SOM}) \bullet Frac_{LEACH-(H)} \bullet EF_5$$

Frac LEACH-(H) = fraction leaching/runoff occurs that [kg N (kg of N additions)-1]

EF5 = emission factor for N2O emissions from N leaching and runoff

[kg N2O-N (kg N leached and runoff)-1]

TABLE 11.3

DEFAULT EMISSION, VOLATILISATION AND LEACHING FACTORS FOR INDIRECT SOIL N2O EMISSIONS

Factor	Default value	Uncertainty range
EF_4 [N volatilisation and re-deposition], kg N ₂ O-N (kg NH ₃ -N + NO _X -N volatilised) ^{-1 22}	0.010	0.002 - 0.05
EF ₅ [leaching/runoff], kg N ₂ O-N (kg N leaching/runoff) -1 23	0.0075	0.0005 - 0.025
$Frac_{GASF}$ [Volatilisation from synthetic fertiliser], (kg NH3–N + NOx–N) (kg N applied) $^{\rm -1}$	0.10	0.03 - 0.3
Frac $_{GASM}$ [Volatilisation from all organic N fertilisers applied , and dung and urine deposited by grazing animals], (kg NH ₃ –N + NO _x –N) (kg N applied or deposited) $^{-1}$	0.20	0.05 - 0.5
Frac _{LEACH-(H)} [N losses by leaching/runoff for regions where Σ (rain in rainy season) - Σ (PE in same period) > soil water holding capacity, OR where irrigation (except drip irrigation) is employed], kg N (kg N additions or deposition by grazing animals) ⁻¹	0.30	0.1 - 0.8

Note: The term $Frac_{LEACH}$ previously used has been modified so that it now only applies to regions where soil water-holding capacity is exceeded, as a result of rainfall and/or irrigation (excluding drip irrigation), and leaching/runoff occurs, and redesignated as $Frac_{LEACH-(H)}$. In the definition of $Frac_{LEACH-(H)}$ above, PE is potential evaporation, and the rainy season(s) can be taken as the period(s) when rainfall ≥ 0.5 * Pan Evaporation. (Explanations of potential and pan evaporation are available in standard meteorological and agricultural texts). For other regions the default $Frac_{LEACH}$ is taken as zero.

CO2 EMISSIONS FROM LIMING

EQUATION 11.12 ANNUAL CO₂ EMISSIONS FROM LIME APPLICATION

 CO_2 -C Emission = $(M_{Limestone} \bullet EF_{Limestone}) + (M_{Dolomite} \bullet EF_{Dolomite})$

CO2–C Emission = annual C emissions from lime application, t C yr-1

M = annual amount of calcic limestone (CaCO3) or dolomite (CaMg(CO3)2), tyr-1

EF = emission factor, tonne of C (tonne of limestone or dolomite) -1. Default emission factors **EF = 0.12** for limestone and **EF=0.13** for dolomite

CO2 EMISSIONS FROM UREA FERTILIZATION

EQUATION 11.13 ANNUAL CO₂ EMISSIONS FROM UREA APPLICATION

 CO_2 -C Emission = $M \bullet EF$

CO2–C Emission = annual C emissions from urea (CO(NH₂)₂) application, tC yr-1

M = annual amount of urea fertilisation, t urea yr-1

EF = emission factor, tC (tonne of urea)-1. The default emission factor EF = 0.20 for carbon emissions from urea applications (carbon content of urea on an atomic weight basis (20% for CO(NH2)2)).

Emissions and removals from drainage and rewetting and other management of organic and mineral soils

2006 IPCC Guidelines (Chapter 7: Wetlands)

TABLE 7.1 SECTIONS ADDRESSING MAJOR GREENHOUSE GAS EMISSIONS FROM MANAGED WETLANDS			
Land-use category/GHG	Peatlands	Flooded Land	
Wetlands Remaining Wetlands			
CO ₂	Section 7.2.1.1	No Guidance ¹	
CH ₄	No Guidance ²	Appendix 3	
N ₂ O	Section 7.2.1.2	No Guidance ³	
Lands Converted to Wetlands			
CO ₂	Section 7.2.2.1	Section 7.3.2.1 and Appendix 2	
CH ₄	No Guidance ²	Appendix 3	
N ₂ O	Section 7.2.2.2	No Guidance ³	

2013 IPCC Wetland Supplement – include EFs for CH4 and N2O

Chapter 2 Drained Inland Organic Soils

Chapter 3 Rewetted Organic Soils

Chapter 4 Coastal Wetlands

Chapter 5 Inland Wetland Mineral Soils

Chapter 6 Constructed Wetlands for Wastewater Treatment

See TABLE 1 COVERAGE OF THE WETLANDS SUPPLEMENT