

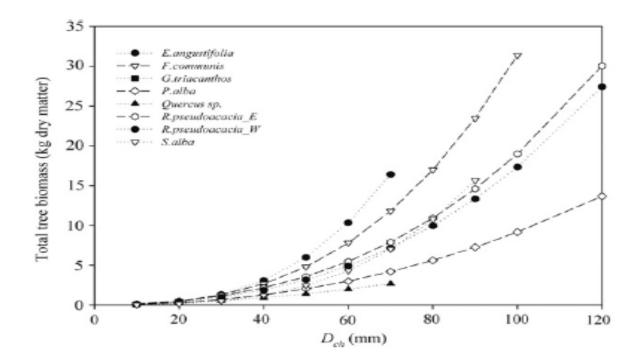
7th training style workshop:

Session 1.1

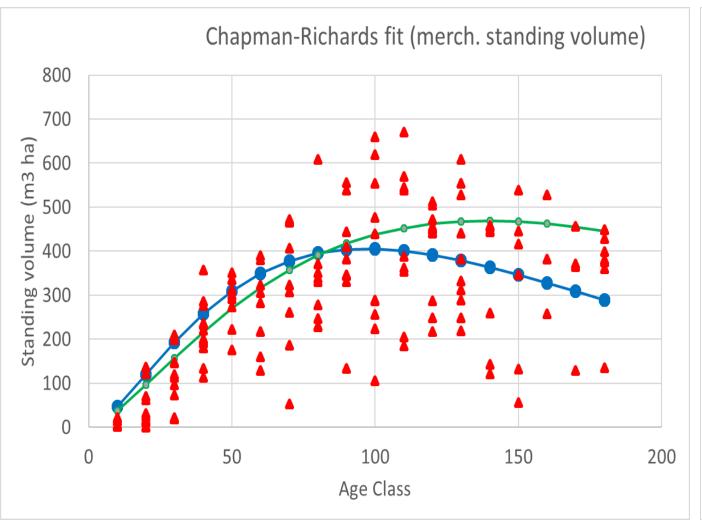
- a) What is modelling? Types of models in LULUCF Sector and their specifications
- b) What is a scenario?
- c) Why do we need modeling and scenarios? Implementation of climate change policy: connection to mitigation of GHG emissions

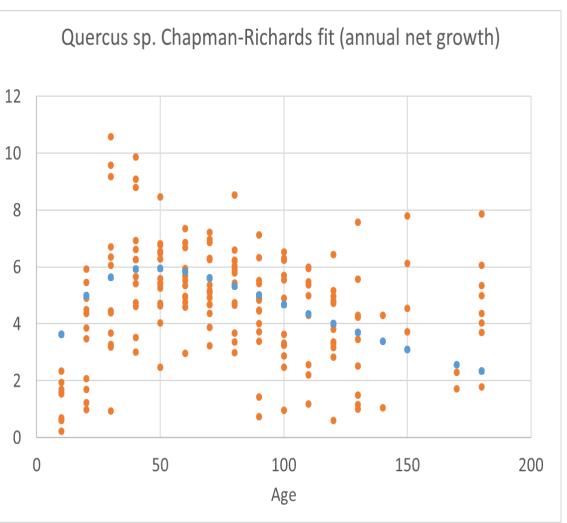
What is modelling?

- Model is a logical, simplified mathematical representation of real world's complex relations:
- models are less complicated than reality;
- quantities simulated by the mathematical model are more readily measured than are model input values,
- conceptualization of ecologic processes: empirical (based on inventory and measurements of modelled parameters) or process-based (biochemical and (eco)physiological processes);
- ...function based on black boxes (i.e. input and output are known, not intermediary steps)
- a trade-off among *precision* (producing quantitatively precise estimates), *realism* (producing qualitative realistic estimates, i.e. accurate) and *generality* (representing a broad range of conditions without model modifications)


Sources: https://www.open.edu/openlearn/science-maths-technology

Types of models in LULUCF Sector and their specifications


Models in forestry are numerous, especially for quantification of biomass/volume!


- are used to estimate <u>individual tree</u> volume or biomass, <u>stand production</u> (e.g. standing stock volume or biomass in time) and <u>stand productivity</u> (e.g. annual net growth increment):
 - a) <u>yield tables</u> for merchantable trees or entire aboveground volume;
 - b) age/DBH/H dependent equations;
- c) tables or equations to estimate share of other biomass components (e.g. branches, stumps, roots, leaves)
 - d) mortality rate (e.g. transfer from living biomass to dead wood);
 - e) dead wood fall rate (i.e. transfer from standing dead wood to laying dead wood);
 - f) decomposition of dead wood and litter;
 - g)

- Simple models in forestry (i.e. volume, biomass, biometric parameters)
 - Individual tree model/equations (DBH diameter of breast height 130 cm from the ground, H tree height):
 - Biomass = a * DBH b (one predictor)
 - Biomass = a * H b (one predictor)
 - Biomass = a * DBH 2 * H (two predictors)

- Simple models in forestry (i.e. volume, biomass, biometric parameters)
 - **Stand** model: Biomass = $a * e^{-b*Age} * (1 e^{(-b*Age)*(c-1)})$

More and more prevalence of models based on parameters having bio/eco-logical significance vs. purely mathematical models

Fraction of maximum biomass still available to grow

Error term

Biomass stock =

*

e -

ge

 $(1 - e^{(-b*Age)*(c-1)}) + 3$

Maximum biomass possible to accumulate

Standing amount available affected by mortality

Other models in LULUCF sector

 Soil models are less numerous, some applicable to both forest and agriculture: CENTURY, RothC, YASSO, Q, ...

Model	Data requirements for model application
CBM-CFS (ecosystem model)	- mean annual temperature (+)
	 annual C inputs from simulated living biomass development (+)
CoupModel (ecosystem model)	- mean daily temperature (-)
	- daily precipitation sums (-)
	- mean daily radiation (-)
	- mean daily air humidity (—)
	- mean daily wind speed (—)
	- daily N deposition [↑] (o)
	 C inputs from simulated living biomass development (+)
	 day, silt, sand fraction (default available for Sweden)[†] (o)
	- soil C content [†] (o)
	- soil N content [†] (o)
Q	- mean annual temperature (+)
	- annual C inputs (+)
	 fractions of chemical compounds of fresh litter[↑] (+)
ROMUL	- mean daily temperature (-)
	- daily predpitation sums (-)
	- daily C inputs (-)
	- N and ash content of fresh dead wood and litter (+)
	- soil water holding capacity (o)
	- saturated water content (o)
	- soil temperature (-)
D-4LC	- soil N content [†] (o)
RothC	- mean monthly temperature (+)
	- monthly precipitation sums (+) - monthly evaporation (o)
	- monthly C inputs (o)
	- fraction of decomposable and resistant material in fresh dead wood and litter [†] (+)
	- day content † (o)
Yasso 07	- mean annual temperature (+)
1035007	- annual precipitation sums (+)
	- annual temperature amplitude (+)
	- annual C inputs (+)
	- fractions of chemical compounds of fresh litter† (+)
	- mean diameter of dead wood (+)
	- mean diameter of dead frood (+)

Other models in LULUCF sector

- HWP products consumption and trade (import and exports) or life cycle (of wood products);
- chains of models linked to economy, energy consumption or population dynamics;

What is a scenario?

- scenario is a predicted sequence of events;
- descriptions of plausible futures, e.g. although with various expected likeliness to happen;
- "Business-as-usual" or "reference", or "baseline" scenario is the one which is expected to most likely happen under current circumstances;
- scenarios are implemented through changing inputs into the models *nota bene*: full comparison of multiple scenarios requires using the same model and model parametrization;
- Variables and parameters for future are chosen by the user;

Why do we need modelling and scenarios?

- Modelling and scenarios help to understand complex environments and interlinked factors and complicated processes;
- Needed to report under higher tiers;
- Making decision in LULUCF, e.g.:
 - plan regular forest management actions;
 - understanding GHG risks linked to natural disturbances;
 - define cost effective GHG mitigation strategy;
 - integrate forest management and wood products use;
- Implementation of climate change policy: parties to UNFCCC are required to "formulate programmes containing measures to mitigate climate change by addressing anthropogenic emissions and removals of all greenhouse gases"
 - support in ex-ante analysis of mitigation of GHG emissions;