



# D2.1 General equations for estimating C stock change in C pools and non-CO2 emissions



### References

 Chapter 2 of vol.4 of the IPCC 2006 Guidelines : Generic Methodologies Applicable to Multiple Land-Use Categories

# Inventory framework – overview of Carbon stock change estimation (1)

- ANNUAL CARBON STOCK CHANGES for national territory
- $\triangle CAFOLU = \triangle CFL + \triangle CCL + \triangle CGL + \triangle CWL + \triangle CSL + \triangle COL$ , where  $\triangle C = \text{carbon stock change}$
- Indices denote the following land-use categories:
  - AFOLU = Agriculture, Forestry and Other Land Use
  - FL = Forest Land, CL = Cropland, GL = Grassland, WL = Wetlands, SL = Settlements, OL = Other Land

# Inventory framework – overview of Carbon stock change estimation (2)

#### ANNUAL CARBON STOCK CHANGES for each land use (sub)category

- $\Delta CLU = \sum \Delta CLUi$
- Stratification on land use subcategories: area of "remaining"+ area "converted to"
- Each subcategory is further on stratified on other criteria, e.g. soil type, soil/land management
  - Example of land use "remaining": CL remaining CL = arable, orchards, vineyards and conversion amongst them
  - Example of land use "converted to": CL to FL (arable, or vineyards, or orchard converted to forestland)

### Inventory framework – overview of Carbon stock change estimation in a pool (3)

- ANNUAL CARBON STOCK CHANGES in each C pool of each land use (sub)category
  - $\triangle CLUi = \triangle CAB + \triangle CBB + \triangle CLT + \triangle CDW + \triangle CSOM + \triangle CHWP$ , where  $\triangle CLUi =$  carbon stock changes for a stratum of a land-use category

- Subscripts denote the following carbon pools:
  - AB = above-ground biomass, BB = below-ground biomass, DW = deadwood, LI = litter, SO = soils, HWP = harvested wood products

### Estimation of CARBON STOCK CHANGES in a pool: Tier 1 method

- Tier 1 methods include several simplifying assumptions:
  - default values are provided (as "large scale and time averaged" values);
  - no change in below-ground living biomass (i.e. roots);
  - dead wood and litter pools can be lumped together in 'dead organic matter';
  - no net stock change in DOM (LT+DW);
  - dead organic matter is assumed to be zero for non-forest land-use categories;
  - all post-disturbance emissions are estimated as part of the disturbance event, i.e., in the year of the disturbance (with exception of removal for harvested wood products)

### Estimation of CARBON STOCK CHANGES in a pool: Tier 2 or Tier 3 methods

1<sup>st</sup> method: *process-based approach*, which estimates the net balance of additions to and removals from a carbon stock, the *Gain-Loss Method* 

**Gains** = growth (of living biomass) and transfer of C from another pool (e.g., transfer to the dead organic matter)

**Losses** = **transfers** of **C** from that pool to another (e.g., slash on the ground from harvesting operation is a loss from the above-ground biomass pool), or **direct emissions to atmosphere** due to decay, burning, harvest (reporting convention), etc.

#### ANNUAL CARBON STOCK CHANGE IN A GIVEN POOL

 $\Delta C = \Delta C G - \Delta C L$ , where:

 $\Delta C$  = annual carbon stock change in the pool, tC yr-1

 $\Delta C_G$  = annual gain of carbon, a positive (+) sign, tC yr-1

 $\Delta CL$  = annual loss of carbon, a negative (-) sign, tC yr-1

Tier takes into account transfers among C pools within the period

### Estimation of CARBON STOCK CHANGES in a pool: Tier 2 or Tier 3 methods

2<sup>nd</sup> method: the *stock-based approach* which estimates the *difference in carbon stocks at two points in time,* the *Stock-Difference Method* 

$$\Delta C = \frac{(C_{t_2} - C_{t_1})}{(t_2 - t_1)}$$

#### where:

 $\Delta C$  = annual carbon stock change in the pool, tC yr-1

Ct1 = carbon stock in the pool at time t1, tC

Ct2 = carbon stock in the pool at time t2, tC

Implicitly accounts for growth, emissions to atmosphere and transfers among pools

Beware to area involved in t1 and t2!

Question: Tier 1 or Tier 2 reporting?

#### Overview of estimation of non-CO2 emission from sources

A flux of emission from a source directly to the atmosphere, at *measurable rate* (by gas measurement)

$$Emission = A \bullet EF$$

Emission = non-CO2 emissions, t of the non-CO2 gas

A = activity data relating to the emission source (can be area or mass unit)

EF = emission factor for a specific gas and source category, t per unit of A

Guidance for non-CO2 emissions: *typically* estimated from national-level aggregate data (in Ch.2 for wildfires and Ch.11 of 2006 Guidelines for non-CO2 soil emissions from managed soils) or *sometimes only* associated with a specific land use (specific meth. then available in chapter dedicated to that category) or